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Abstract 

Background: Brominated flame retardants (BFRs), used in many types of consumer goods are 

being studied because of concerns about possible health effects related to endocrine disruption, 

immunotoxicity, reproductive toxicity and neurotoxicity. Tetrabromobisphenol A (TBBPA), the 

most widely used BFR, and human metabolites of certain congeners of polybrominated diphenyl 

ether (ex. 3OHBDE47) have been suggested to inhibit estrogen sulfotransferase, potentially 

affecting estrogen metabolism. 

Objectives: The primary goal was to understand the structural mechanism for inhibition of the 

hormone metabolizing enzyme estrogen sulfotransferase by certain BFRs. In this process we 

sought to understand various factors that facilitate the binding of flame retardants in the enzyme 

binding pocket. 

Methods: Xray crystallography was used to obtain atomic detail of the binding modes of 

TBBPA and 3OHBDE47 to the estrogen sulfotransferase to be compared to binding of the 

endogenous substrate estradiol. 

Results: The crystal structures reveal how BFRs mimic estradiol binding and the various 

interactions between the compounds and protein residues that facilitate its binding. Additionally, 

the structures provide insights into the ability of the sulfotransferase substrate binding pocket to 

accomodate a range of halogenated compounds that satisfy minimal structural criteria. 

Conclusions: Our results show how BFRs or their metabolites can bind to and inhibit a key 

hormone metabolizing enzyme potentially causing endocrine disruption. 
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Introduction 

Properties of brominated flame retardants (BFRs) that reduce flame propagation during fires 

have resulted in increased utilization of BFRs in electronic devices, building materials, furniture, 

automobiles and airplanes (Green 1996; Shaw et al. 2010). BFRs are primarily categorized as 

additive or reactive (Alaee et al. 2003). Additive BFRs such as polybrominated diphenyl ethers 

(PBDEs) are used in polyurethane foam, textiles, and a wide array of polymer based products, 

where they are simply blended into the polymers and therefore can easily leach out of the 

products (Alaee et al. 2003). PBDEs were produced as mixtures of bromination content and 

called penta, octa and deca BDEs with one of the major congeners in the pentaBDE mix 

being 2,2',4,4'tetrabromodiphenyl ether (BDE47, 3hydroxylated form shown in Figure 1A) 

(Alaee et al. 2003; Birnbaum and Staskal 2004). In contrast, reactive BFRs are chemically 

bonded into the plastics and heavily used in printed circuit boards (as high as 20% bromine 

(Alaee et al. 2003)). TBBPA (3,3',5,5'tetrabromobisphenol A, Figure 1B), the most heavily 

produced BFR with a worldwide demand of >200,000 tons/year, is mainly used as a reactive 

BFR, but has additional applications as an additive such as in acrylonitrilebutadienestyrene 

plastic products (Alaee et al. 2003; Birnbaum and Staskal 2004; BSEF 2012; Canada 2012). 

A primary concern in the use of BFRs, such as PBDEs and TBBPA, is a large number of studies 

showing environmental release of these compounds from existing or discarded products (de Wit 

2002; Stapleton et al. 2012b). These chemicals have been detected in air samples, sewage and 

river sediments (de Wit 2002). Several studies have reported ng/g levels of these chemicals in 

breast milk and serum (Abdallah and Harrad 2011; Thomsen et al. 2002). A study including a 

group of 77 children in the age group of 1–3 years, emphasized the vulnerability of young 

children to BFR exposures in the home (Stapleton et al. 2012a). Exposure to BDE47 and 
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TBBPA has been associated with disruption in calcium signaling, immune response and 

neurotoxicity (Koike et al. 2012; Mariussen and Fonnum 2003; Ogunbayo et al. 2008). TBBPA 

has been shown to induce tumor formation in rats and mice in a 2year bioassay study conducted 

by the National Toxicology Program (NTP 2013). Due to structural similarity and in vitro 

evidence, BFRs may mimic hormones and interfere with their binding, transport and regulation 

(Chan and Chan 2012; Hamers et al. 2006) leading to endocrine disruption. Hamers et. al. 

(Hamers et al. 2006) have reported doseresponse relationships of BFRs for interference with 

androgenic, estrogenic and progestronic pathways. Furthermore, crystal structures of PPARγ in 

complex with TBBPA and tetrachlorobisphenol A (TCBPA) suggest how brominated and 

chlorinated flame retardants can mimic binding of ligands to receptors (Riu et al. 2011a). 

To further complicate matters, BFRs may act synergistically as endocrine disruptors (EDs) as 

suggested in studies involving BDE47 and BDE99 (Tagliaferri et al. 2010). The role of BFRs 

as EDs may be further pronounced because of contribution of their metabolites/analogs which 

have been previously detected in various species (Fini et al. 2012; Hakk et al. 2000; Schauer et 

al. 2006; Shen et al. 2012; Zalko et al. 2006). Hydroxylated metabolites of BDE47 have been 

detected in incubations with rat microsomes (Hamers et al. 2008) and human hepatocytes 

(Marteau et al. 2012), as well as in fetal and maternal blood samples (Qiu et al. 2009). One of 

the metabolites detected in the above studies and used in the current work is 3hydroxy2,2',4,4'

tetrabromodiphenyl ether (3OHBDE47, Figure 1A). Some proteins may bind to metabolites 

yet show negligible binding to the parent compound (Hamers et al. 2008). 

In humans, there are 13 cytosolic sulfotransferases that catalyze the transfer of a sulfuryl group 

(SO3) from the donor cofactor 3'phosphate 5'phosphosulfate (PAPS) to acceptor substrates 

including xenobiotics, fatty acids, neurotransmitters and steroids (Gamage et al. 2006; Song 
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2001; Wang and James 2006). Sulfation of 17βestradiol (E2, Figure 1C) by the human estrogen 

sulfotransferase (SULT1E1), results in loss of binding to the estrogen receptor as well as 

increased availability for renal excretion, thereby effectively regulating the concentration of E2 

(Falany 1997). It has been reported that TBBPA and 3OHBDE47 can inhibit SULT1E1 with 

IC50 values of 30 and 23 nM respectively (Hamers et al. 2008; Kester et al. 2002). Increased 

levels of PentaBDEs (BDE47, 99 and 100) in house dust were positively associated with 

increased serum E2 concentrations in 62 men recruited from an infertility clinic (Johnson et al. 

2013). Together, these reports suggest that exposure to BFRs may affect the concentration of E2 

in the cell potentially triggering downstream estrogenic responses. 

In this study, we have obtained crystal structures of SULT1E1 with the product cofactor PAP in 

complexes with the ubiquitous flame retardant, TBBPA and a BFR metabolite, 3OHBDE47. 

These structures are compared to that of E2 binding to understand in atomic detail how these 

compounds are accommodated and inhibit the hormone metabolizing enzyme, SULT1E1. 

Materials and Methods 

Chemicals: TBBPA [3,3’,5,5’tetrabromobisphenol A] was purchased from SigmaAldrich (St 

Louis MO) analytical grade, ≥97% purity. 3OHBDE47 [3hydroxy2,2',4,4'

tetrabromodiphenyl ether] was purchased from AccuStandard (Connecticut, USA), 97% purity. 

17βestradiol (E2) and adenosine3'5'diphosphate (PAP), ≥ 97% purity were obtained from 

SigmaAldrich. 

Protein expression, purification and crystallization: The human estrogen sulfotransferase 

(SULT1E1) mutant V269E was used in these experiments as it facilitates crystallization and was 
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expressed and purified as described previously (Pedersen et al. 2002). This mutation lies on the 

surface of the protein remote from the active site at the dimer interface and favors monomer 

formation in solution yet still forms the expected physiological dimer in the crystal as seen in 

other sulfotransferase structures (Pedersen et al. 2002; Petrotchenko et al. 2001). Crystal 

structures of the complex of SULT1E1PAP with TBBPA and with E2 were obtained by co

crystallization studies. The protein used for crystallization was concentrated to 13.6 mg/ml in a 

solution at pH 7.5 containing 1.5 mM sodium phosphate dibasic, 0.15 mM monopotassium 

phosphate, 40 mM sodium chloride, 1 mM dithiothreitol and 4 mM PAP. TBBPA or E2 

dissolved in 100% dimethyl sulfoxide (DMSO) was added to the protein stock for a final 

concentration of 8 mM. For crystallization, proteinTBBPA solution or proteinE2 solution was 

mixed in equal volume with 0.1 M HEPES pH 7.5 and 1824% (w/v) polyethylene glycol 8000 

using the sitting drop vapor diffusion at 293K. For data collections, crystals were then 

transferred to a cryoprotectant solution containing 0.1 M HEPES pH 7.5, 22% polyethylene 

glycol 8000, 4 mM PAP, 15% ethylene glycol and 8 mM TBBPA or E2 and flash frozen in 

liquid nitrogen. 

To obtain the crystal structure of SULT1E1 in complex with 3OHBDE47 and PAP, protein 

stock was mixed in equal volume with 0.1 M 2[Nmorpholino]ethane sulfonic acid, pH 6.0, and 

1722% (w/v) polyethylene glycol 8000, then placed at 293K where crystals were grown using 

hanging drop vapor diffusion technique. SULT1E1PAP crystals were transferred in three steps 

into a cryoprotectant solution consisting of 3OHBDE47 suspended at a concentration of 5 mM 

in 0.1 M 2[Nmorpholino]ethane sulfonic acid, pH 6.0, and 20% (w/v) polyethylene glycol 

8000, 4 mM PAP and 15% (v/v) ethylene glycol. Crystals were soaked in the cryoprotectant 

solution for 5 days before flash freezing in liquid nitrogen for data collection. 
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Competitive crystallization experiment: Crystal structure of the complex of SULT1E1PAPE2

TBBPA was obtained by cocrystallization studies. TBBPA and E2 dissolved in 100% DMSO 

were added to the protein stock for final concentrations of 8 mM each. ProteinE2TBBPA 

solution was mixed in equal volume with 0.1 M HEPES pH 7.5 and 1824% (w/v) polyethylene 

glycol 8000 using the sitting drop vapor diffusion at 293K. For data collections, crystals were 

then transferred to a cryoprotectant solution containing 0.1 M HEPES pH 7.5, 22% (w/v) 

polyethylene glycol 8000, 4 mM PAP, 15% (v/v) ethylene glycol, 8 mM TBBPA and 8mM E2 

and flash frozen in liquid nitrogen. 

Crystallographic data collection, processing and structure refinement: Data were collected for 

all the crystals using a Saturn 92 Xray detector with a Micromax007 HF Xray generator 

(Rigaku, Texas, USA). The crystallographic data statistics are presented in Supplemental 

Material, Table S1. All data were indexed and scaled using the HKL2000 data processing 

software (Otwinowski and Minor 1997). The structures were solved using the structure of 

SULT1E1 [Protein Data Bank (PDB) ID code 1G3M, (Shevtsov et al. 2003)] as a starting model. 

Reference Rfree reflections were maintained in all three structures. Phenix (Adams et al. 2010) 

and Coot (Emsley et al. 2010) were used to obtain the structures by iterative cycles of refinement 

and model building. Model quality was assessed using Molprobity (Chen et al. 2010). All 

structural figures were prepared in PyMOL. 

Atomic coordinates and structure factors for the reported crystal structures have been deposited 

with the Protein Data Bank under PDB ID codes 4JVM for SULT1E1PAPTBBPA structure, 

4JVN for SULT1E1PAP3OHBDE47 structure and 4JVL for SULT1E1PAPE2 structure. 
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Results 

To understand the binding and inhibition of estrogen sulfotransferase by BFRs, we obtained 

crystal structures of SULT1E1 in complex with the product cofactor PAP and three different 

compounds bound at the active site: natural substrate E2, a BFR TBBPA and a human BFR 

metabolite 3OHBDE47 (at 1.95 Å, 2.0 Å, and 2.05 Å resolution, respectively). SULT1E1 

crystallizes with two molecules in the asymmetric unit (labeled molecule A and molecule B) 

representing the proposed physiological dimer (Petrotchenko et al. 2001). 

Crystal structure of the SULT1E1PAPE2 complex: The crystal structure of human SULT1E1 

with PAP and E2 bound to the active site (see Supplemental Material, Figures S1A, S1B and 

S2A) is similar in overall fold and substrate binding as previously determined for the mouse 

estrogen sulfotransferase (Kakuta et al. 1997). In brief, E2 binds to a mostly buried hydrophobic 

pocket with the sulfurylacceptor hydroxyl of E2 within hydrogen bonding distance to the 

proposed catalytic base His107 and Lys105 placing it in proper position for catalysis (Kakuta et 

al. 1997; Pedersen et al. 2002). Also contributing to the positioning are Phe80 and Phe141 

which flank the planar faces of the phenolic ring of E2 and have been suggested to function as a 

steric gate conferring substrate specificity for the enzyme (Petrotchenko et al. 1999) (see 

Supplemental Material, Figure S1C). 

Crystal structure of the SULT1E1PAPTBBPA complex: The cocrystal structure of PAP and 

TBBPA bound to SULT1E1 reveals TBBPA binding in the same substrate binding pocket as E2. 

In molecule B, the position of the TBBPA is well determined as there is clear electron density for 

the entire molecule with strong density for the first phenolic ring and slightly weaker for the 

second ring, suggesting that this ring contains greater conformational flexibility (Figure 2A). 
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The first phenolic ring of TBBPA superimposes with the phenolic ring of E2 positioning the 4

hydroxyl within hydrogen bonding distance to the catalytic base His107 similar to the 3

hydroxyl of E2 (Figure 2B and see Supplemental Material, Figure S2B). Additionally, this ring 

neatly fits between the steric gate residues Phe80 and Phe141. The second ring is located out of 

the plane with respect to E2 and extends into a different region of the hydrophobic binding 

pocket (Figure 2B). The halogens on the first phenolic ring are easily accommodated within the 

active site of SULT1E1. The bromine (Br5) bound to the C5 carbon is buried in a hydrophobic 

cavity within van der Waal distance (4.3 Å) of Tyr20, Phe80, His107, Phe141, and Tyr168 

(Figure 2C). Bromine atom Br3 is located in a more hydrophilic environment and potentially 

able to form hydrogen or halogen bonds with Lys105 (3.1 Å) and/or Tyr239 (3.2 Å) (Figure 2D). 

On the second phenolic ring, Br3' is located proximal to Leu88, Ile246, and Leu242 near the 

surface of the protein (see Supplemental Material, Figure S3A) while bromine atom Br5' is 

surrounded by residues Phe80, Met89, and Phe75 as well as within hydrogen or halogen bonding 

distance to two ordered water molecules (3.3 Å and 3.2 Å) (see Supplemental Material, Figure 

S3B). 

Overall, the protein conformation of SULT1E1 with TBBPA bound is very similar to that with 

E2 bound with only a few minor changes in the substrate binding pocket. Binding of TBBPA 

results in increased sidechain order for Met247 whereas the sidechain of Ile246 becomes slightly 

more disordered and the conformation of loop residues 8489 is altered (2.0 Å at Cα atom of 

Asn87 in molecule B) (Figure 2B). Although the electron density for TBBPA in molecule A is 

not as clear for the second ring, it appears that the overall position of the molecule is slightly 

shifted with respect to the position in molecule B. This shift is correlated with a shift in the loop 
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(4.5 Å at Cα atom of Asn87 in molecule A compared to molecule B of E2 bound structure) 

containing residues 8489. 

Crystal structure of the SULT1E1PAP3OHBDE47 complex: The crystal structure of 

SULT1E1 with PAP and the BDE47 metabolite 3OHBDE47 bound reveals the metabolite 

binding to the same binding site as E2 and TBBPA (Figure 3 and see Supplemental Material, 

Figure S2C). Similar to TBBPA there is strong electron density for the phenolic ring of the 

metabolite bound to both molecules A and B but much weaker density for the second aromatic 

ring which is modeled as partial occupancy in molecule A and is too weak to model in B (Figure 

3A). The phenolic ring superimposes well with that from TBBPA in both molecules A and B, 

forming similar interactions with the protein (Figure 3B and see Supplemental Material, Figures 

S3C and S3D). Compared to TBBPA, different substitution patterns on the phenolic ring (3OH 

vs. 4OH) and different bridging groups between the aromatic rings (ether vs isopropyl) creates 

divergence in the positioning of the second aromatic ring (Figure 3B). For 3OHBDE47, the 

dibromophenyl group is overlapping with, but perpendicular to the plane of the E2 molecule in 

the E2 bound structure (Supplemental Material, Figure S4D). This positions Br4' at the protein 

surface exposed to the solvent (Figure 3A). The density for Br2' is weaker than that for Br4', 

likely due to different rotamers of the second ring which would maintain the position of Br4' but 

reposition Br2' in multiple orientations. Binding of 3OHBDE47 in molecule A results in a 

shift in the position of loop 8489 (4.1 Å shift at Cα on Asn87) when compared to E2 binding, 

similar to what is seen in the A molecule when TBBPA is bound. 

Cocrystallization of PAP, TBBPA and E2 to SULT1E1: To examine if TBBPA could compete 

for binding with E2, we cocrystallized SULT1E1 in the presence of PAP and equal 

concentrations of TBBPA and E2. Unmodeled electron density contoured at 2.5σ in the 
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substrate binding site suggests that E2 and TBBPA are competing for the same binding site 

(Figure 4). Strong electron density exists for the common phenol ring of the two molecules but 

partial density is observed at the position where halogens are found on the first ring of TBBPA in 

molecule A of the TBBPA structure. There is also partial density for the remainder of the E2 

molecule. This suggests a certain percentage of SULT1E1 molecules in the crystal are binding 

E2 while others are binding TBBPA in the substrate binding site. 

Discussion 

Binding to sulfotransferase by BFRs: In the current study we have obtained crystal structures 

of SULT1E1 in complex with TBBPA (a BFR) and 3OHBDE47 (a metabolite of BFR, BDE

47). Although these chemicals differ structurally, there are remarkable similarities in how they 

bind to SULT1E1. A noticeable structural feature is the presence of a phenolic ring with the 

hydroxyl flanked by two bromine atoms (highlighted in red, Figure 1). The phenolic ring on 

these BFRs superimpose well with that of the acceptor phenol of E2 and is selected for by steric 

gate residues Phe80 and Phe141 which have been reported to contribute towards substrate 

specificity (Petrotchenko et al. 1999). The absence of the hydroxyl on BDE47 increases the 

IC50 value to SULT1E1 by 170 fold compared to that of the metabolite 3OHBDE47 (Hamers 

et al. 2008). This suggests that the hydroxyl moiety on the BFRs enhances the binding affinity to 

SULT1E1. 

In addition to the hydroxyl moiety, bromine atoms also appear to contribute to stable binding of 

BFRs. Bromine atoms substituted on adjacent carbons to the hydroxyl are not only tolerated in 

SULT1E1 but appear to enhance binding affinities as observed for other halogens in different 

systems (Gales et al. 2008; Riu et al. 2011a). This is supported by the fact that Bisphenol A 
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(BPA), the nonbrominated form of TBBPA, has an IC50 value to SULT1E1 300 times higher 

than that of TBBPA (Kester et al. 2002). Consistent with the poor inhibition by BPA, our 

attempts to crystallize SULT1E1 in complex with PAP and BPA resulted in no detectable 

binding for BPA (data not shown). The ability of some cytosolic sulfotransferases such as 

SULT1E1 to have enhanced binding to halogenated compounds may stem from physiological 

roles in sulfation of iodothyronines. Thyroid hormones have iodine atoms substituted on the 

phenolic ring adjacent to the acceptor hydroxyls and have been shown to be substrates for 

SULT1E1 (Kester et al. 1999). Sulfation is an important step in the inactivation and metabolism 

of these hormones (Visser et al. 1990). 

Another factor allowing for inhibition of SULT1E1 by BFRs is the expanse of the substrate 

binding pocket away from the catalytic site. Neither TBBPA nor 3OHBDE47 are planar, like 

E2, resulting in the second aromatic ring being out of the plane when compared to the position of 

E2 (see Supplemental Material, Figure S4AD). The size of the pocket allows for binding of 

various ligands at this position in various orientations (Figure S5). The second aromatic ring in 

TBBPA and 3OHBDE47 likely do not contribute significantly to their affinity for binding 

when compared to the first ring. This is exemplified by the decrease in the electron density in 

this region of both molecules consistent with increased disorder (Figures 2A and 3A). The IC50 

values of TBBPA and 3OHBDE47 (18 and 23 nM, respectively) are near the Km of 5 nM for 

E2 suggesting these compounds bind to SULT1E1 with high affinity (Hamers et al. 2008; Kester 

et al. 2002; Zhang et al. 1998). It is possible that the bromine atoms on the first ring of the 

compound may compensate for the lack of specific interactions at the disordered end when 

compared to the rigid E2 molecule. Another example of SULT1E1 accommodating a 

halogenated aromatic hydrocarbon is a previously reported structure of SULT1E1 in complex 
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with PAP and 4,4´(OH)23,5,3´,5´–tetrachlorobiphenyl (a hydroxylated form of PCB80) 

(Shevtsov et al. 2003). Based on superpositions of the SULT1E1 structures bound to TBBPA, 3

OHBDE47, 4,4´(OH)23,5,3´,5´–tetrachlorobiphenyl and E2, it appears that SULT1E1 is able 

to bind these structurally diverse compounds with only minor changes in a few sidechain 

residues and small shifts in loop 8489 (see Supplemental Material, Figure S5 and Figure S6). 

The ability to accommodate structurally diverse compounds provides an opportunity for the 

enzyme to bind a large variety of halogenated phenols, suggesting inhibition of SULT1E1 could 

occur at lower individual doses when exposed to mixtures of BFRs. Despite the seemingly 

promiscuous nature of the substrate binding pocket to polyhalogenated aromatic phenols, not all 

are capable of potent inhibition of SULT1E1 (Hamers et al. 2008; Kester et al. 2002; Kester et al. 

2000). The metabolites 6OHBDE47 and 2´OHBDE66 have IC50 values for SULT1E1 that 

are approximately 20 and 80 fold higher than that for 3OHBDE47. These compounds differ 

from TBBPA and 3OHBDE47 as their hydroxyls are in ortho positions. Such an arrangement 

would likely not allow for the hydroxyl to sit at the “sulfuryl acceptor” position and thus would 

be unable to form hydrogen bonds with His107 and Lys105 resulting in decreased binding 

affinity. 

Inhibition of sulfotransferases by BFRs: Previous kinetic studies on BFR inhibition of 

SULT1E1 suggest that the mode of inhibition is by a noncompetitive mechanism (Kester et al. 

2002). This is consistent with work that demonstrated substrate inhibition via an allosteric 

binding site (Zhang et al. 1998). Structural evidence for a noncompetitive binding site comes 

from the crystal structure of the sulfotransferase SULT1A1 in complex with the substrate, p

nitrophenol, with two molecules bound within the substrate binding pocket (Gamage et al. 2003). 

The crystal structures of E2 bound to estrogen sulfotransferases (mouse and human) do not 

13 



 
 

                

                   

              

             

                

              

                

              

             

                

      

                 

              

                 

                

             

                  

        

              

               

              

              

               

Page 14 of 26 

reveal such an allosteric site (Kakuta et al. 1997). Our crystallization experiment in the presence 

of both E2 and TBBPA suggests that the binding of E2 does not permit the binding of TBBPA at 

another position (Figure 4). Rather, the observed electron density is consistent with both 

molecules competing for binding at the same catalytic binding site. Noncompetitive inhibition 

patterns can also be observed for active site binding inhibitors in two substrate systems when the 

inhibitor shows preferential binding for a different conformation of the enzyme than the acceptor 

substrate (Blat 2010). This suggests that inhibition of SULT1E1 by specific BFRs may be a 

result of high affinity binding to the SULT1E1PAP postcatalytic complex (as in our crystal 

structures). This is consistent with recent kinetic studies that suggest noncompetitive substrate 

inhibition by high concentrations of E2 is through a deadend complex where both PAP and E2 

are bound (Sun and Leyh 2010). 

Sulfation of BFRs: To complicate matters, BFRs containing phenol groups not only function as 

inhibitors, but are also weak substrates for the sulfotransferases. Several studies have detected 

sulfated TBBPA in urine and blood samples of rats and humans as well as in tadpole extracts 

(Fini et al. 2012; Hakk et al. 2000; Schauer et al. 2006). TBBPA and TCBPA 

(tetrachlorobisphenol A) have been shown to be modestly sulfated by SULT1A1 and SULT1E1 

by in vitro studies (Kester et al. 2002). In a superimposition of the crystal structures of 

SULT1E1PAPTBBPA, SULT1E1PAP3OHBDE47 and SULT1E1PAPE2 with that of the 

SULT1E1PAPS complex (PDB ID code 1HY3, (Pedersen et al. 2002)) all the atoms required 

for the transfer of the sulfuryl group to the hydroxyls of TBBPA and 3OHBDE47 are 

positioned for catalysis similar to that seen for E2 sulfation (see Supplemental Material, Figure 

S5). Sulfation of these compounds could decrease their toxicity by enhancing their solubility 

and renal excretion. As well, it may decrease the compound’s toxicity via disruption of binding, 
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as in vivo studies of the sulfoconjugate of TBBPA demonstrate only the parent compound 

having an effect on thyroid hormone signaling (Fini et al. 2012). In contrast, studies on PPARγ 

suggest that sulfated TBBPA still exhibits residual PPARγ binding (Riu et al. 2011b). The 

uncertainty in the fate/consequences of the BFRs, their metabolites or conjugates in the cell, 

suggests further studies are necessary to understand their contribution and mechanism in 

endocrine disruption. 

Conclusion 

BFRs may disrupt proper endocrine function by multiple mechanisms including hormone 

signaling, transport, and metabolism. Here we have presented crystal structures of the BFR 

TBBPA and a human BFR metabolite 3OHBDE47 to the steroid metabolizing enzyme 

SULT1E1. These structures reveal how BFRs can mimic estradiol binding to the active site of 

the enzyme. TBBPA and 3OHBDE47 are structurally diverse from each other as well as from 

estradiol but can still be accommodated by the enzyme. The common feature is a phenolic ring. 

The presence of bromine atoms adjacent to the hydroxyl in some BFRs and their metabolites 

may compensate for the lack of similarity in structure to E2. Low IC50 inhibition by structurally 

diverse BFRs, including parent compounds and metabolites, suggests low dose exposure to 

multiple compounds could have an additive effect reducing the concentration required of a single 

compound for endocrine disruption. 
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Figure legends 

Figure 1: Chemical structure diagrams: A) 3OHBDE47, 3hydroxylated metabolite of the 

parent BFR, BDE47. B) TBBPA. C) 17βestradiol (E2). The phenolic ring in common with all 

three compounds is highlighted in red. 

Figure 2: Crystal structure complex of SULT1E1PAPTBBPA. A) A simulated annealing Fo

Fc omit map (purple) contoured at 2.5σ for TBBPA (blue) with bromine atoms shown in brown. 

SULT1E1 is shown in cartoon representation with His107, Phe80 and Phe141 colored salmon. 

B) Superimposition of TBBPA bound structure in molecule B (protein in salmon, TBBPA in 

blue) with E2 bound structure in green (molecule B); RMSD (root mean square deviation) of 

0.09Å over 233 Cα atoms and TBBPA bound structure in molecule A (grey) with E2 bound 

structure in green (molecule B); RMSD of 0.171Å over 225 Cα atoms. The phenolic hydroxyl of 

TBBPA (molecule B) is within hydrogen bonding distance to the catalytic His107. No 

significant differences are observed between the two structures except for loop residues 8489. 

C) and D) Binding sites for Br5 and Br3, respectively. 

Figure 3: Crystal structure complex of SULT1E1PAP3OHBDE47. A) A simulated 

annealing FoFc omit map (purple) contoured at 2.5σ for 3OHBDE47 (cyan) with bromine 

atoms shown in brown. SULT1E1 is shown in cartoon representation with His107, Phe80 and 

Phe141 in salmon. B) Superposition of SULT1E1 structure with 3OHBDE47 bound to that of 

TBBPA bound (grey; molecule A (RMSD = 0.1 over 257 Cα atoms) and blue; molecule B 

(RMSD = 0.21 over 241 Cα atoms). The first phenolic rings of each compound superimpose 

well despite different orientation of the second phenolic ring. 
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Figure 4: Crystal structure complex of SULT1E1PAPE2TBBPA. Unmodeled FoFc electron 

density (purple) contoured at 2.5σ shows partial density for both E2 (green) and TBBPA (blue). 

E2 and TBBPA have been placed into the active site based on the superpositions of their 

respective complexes with SULT1E1. 
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